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The paper discusses the possibility of predicting the dynamic behaviour, in terms of modal
frequencies and loss factors, of sandwich beams with a constrained viscoelastic layer
con"guration. The problem is approached by the Rayleigh}Ritz method so that virtually
any boundary condition can be dealt with by applying a single procedure. Simple
polynomials are used as admissible functions and evidence of their good performance is
given. The method is also suitable for the analysis of those arrangements where not only the
viscoelastic material but also the external layers of the sandwich are damped.
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1. INTRODUCTION

Flexural vibrations of both beams and plates, with various damping treatments, have been
the subject of research in the past decades, starting with the early works of Oberst and
Kerwin, Ross and Ungar [1}3]. Also by limiting the attention to beams with a constrained
layer con"guration, i.e., a single layer of damping material sandwiched between two
non-dissipating faces, it is possible to "nd a number of detailed papers and many di!erent
approaches to the topic in the literature. In reference [4], a sixth order di!erential equation
of motion is formulated for the free oscillations of sandwich beams, and is demonstrated
that, for each mode, the loss factor is independent of the boundary conditions, given
a certain vibration frequency. The problem of computing both frequencies and loss factors
is explicitly solved in references [5}7], for both beams and plates, when simply supported
end conditions are assumed. In references [8}10], analytical}numerical procedures are
proposed to solve the problem when di!erent boundary conditions are assumed. The "nite
element procedure has also been adopted [11, 12], on the basis of the considerations
expressed in reference [13].

In the present investigation, mode shapes, frequencies and loss factors are sought by
means of the Rayleigh}Ritz method. Polynomials are used as admissible functions [14],
properly chosen so as to satisfy the geometrical boundary conditions.

2. KINETIC AND STRAIN ENERGIES

The "rst step required by the Rayleigh}Ritz method is to express the kinetic and strain
energies of the structure. The following hypotheses, indeed common to many authors, are
assumed [7]:

(a) the constitutive materials of the beam are homogeneous and isotropic,
(b) all displacements, both in-plane and transverse as well as rotations, are small,
0022-460X/01/140643#10 $35.00/0 ( 2001 Academic Press
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(c) the three layers undergo the same transverse de#ection,
(d) no slipping occurs at the interface between the three layers,
(e) plane transverse to the middle plane remains plane after bending,
(f ) longitudinal displacements vary linearly (Figure 1),
(g) extension and stress p

x
in the core are ignored.
Figure 1. Sketch of the deformations in the sandwich.
Choosing u
1

and u
3

(the in-plane displacements in the x direction) and w (the transverse
displacement) as independent variables (subscripts 1 and 3 denoting the external faces),
the stress and strain components may be written as (see Appendix A for a list of
symbols):
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with z as in Figure 1.
By choosing m"x/¸, m3[0, 1], and letting
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the strain energy ; is expressed as [7]
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The kinetic energy ¹, taking into account transverse and in-plane displacements as well as
rotary e!ects, is [7]
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By properly choosing the expressions for the three displacements, w, u
1
, and u

3
, all

the integrals in equations (1) and (2) can be evaluated in order to obtain the circular
frequency u.

It should be noted that di!erent hypotheses, leading to di!erent expressions for the
kinetic and strain energies, would not a!ect the procedure described here.

3. FORMULATION OF THE PROBLEM

The second step required by the Rayleigh}Ritz method is to express the displacements as
a sum of admissible functions. With
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and minimizing Rayleigh's quotient with respect to the constant coe$cients a
i
, b

i
and c

i
, it is

possible to assemble a system of equations in matrix form as

Ax"jBx. (4)
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and i"1,2, I.
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equation (5) can be rewritten as
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so that the "rst I row and 3I columns of matrix A will be
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As the 3I]3I matrices A and B depend on the values assumed by the integrals (6), j is equal
to ¸u2/2, the vector x"Ma

1
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I
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1
2b

I
c
1
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NT contains the unknown coe$cients, the

solution of the eigenvector problem (4) yields 3I natural frequencies, in terms of eigenvalues
j, and 3I mode shapes, in terms of eigenvectors x, i.e., a

i
, b

i
and c

i
. An example of mode

shapes is given in Figure 2 where transverse and longitudinal displacements of
Figure 2. (a) Transverse displacement (**: mode 2, ....: mode 4) of a clamped-free beam.

Figure 2. (b) Longitudinal displacement (**: mode 2, ....: mode 4) of layer 1 of a clamped-free beam.



Figure 2. (c) Longitudinal displacement (**: mode 2, ....: mode 4) of layer 3 of a clamped-free beam.

RAYLEIGH-RITZ ANALYSIS OF SANDWICH BEAMS 647
a clamped*free beam are represented, as obtained with the admissible functions de"ned in
the following paragraph.

To compute the loss factor of the beam, it is su$cient to substitute the shear modulus of
the core G

2
with the complex form G*"G

2
(1#ig

v
); the ratio of the imaginary part to the

real part of each eigenvalue j will give the loss factor of the beam at each vibration
frequency. It is also possible to impose complex Young's moduli for the constraining layers,
which are usually considered perfectly elastic and unable to dissipate energy.

4. ADMISSIBLE FUNCTIONS

For a correct evaluation of integrals (6), and the following calculation of modes, some
care has to be taken in the choice of the admissible functions /

i
and t

i
. Polynomials, as

proposed in reference [14], have been used in this work, as summarized in Table 1.
Only for simply supported beams do /

i
and t

i
have to di!er, in order to allow in-plane

displacements at both ends where transverse de#ection is null. Whilst all these admissible
functions satisfy the geometrical boundary conditions, the physical boundary conditions
(forces and moments) are only satis"ed by their sum [14].
TABLE 1

Admissible functions

Boundary conditions /
i

t
i

Clamped}free mi`1 mi`1

Free}free (m!1/2)i~1 (m!1/2)i~1

Clamped}clamped (m!1/2)i~1m2 (1!m2 ) (m!1/2)i~1m2(1!m2)

Simply supported at both ends (m!1/2)i~1m(1!m) (m!1/2)i~1
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On the basis of these admissible polynomials, all the integrals E rs
ki
, F rs

ki
and Grs

ki
(6),

appearing in the expressions for ¹ and ;, may be reduced to a couple of typical
representations.

The "rst is valid for the functions selected for clamped}free beams and has been derived
in reference [14]. It is a recurrence relationship stating that

G(a, b#1)"
a

a#b
G (a, b) (7)

with G (a, b)"P
1

0

ma~1(1!m)b~1dm, (a, b"1, 2, 3,2) and G(a, 1)"1/a.

The second holds true for all the other conditions and states that, after repeated solutions by
parts, the integral

G(c, d)"P
1

0
Am!

1

2B
c
md dm

assumes the value

G(c, d)"A
1

2B
c`1

G
1

c#1
#

d
+
d/1
C

<d~1
i/0

(d!i)

<d
i/0

(c#1#i) A!
1

2B
d
DH

#(!1)d~1A!
1

2B
c`d`1 <d~1

i/0
(d!i)

<d
i/0

(c#1#i)

with c, d"1, 2, 3,2 .
Of course, the powers a, b, c and d depend on the coe$cients k, i, r and s in equation (6).
The implementation of the second formula is much slower than the "rst, but shown to be

necessary when numerical simulations were carried out, for various boundary conditions,
for admissible functions in the form [14]

/
i
"mm`i(1!m)l.

These polynomials lead to the recursive equation (7), but were found not to converge
towards satisfactory results. In fact these functions, with m and l as in Table 2, cannot even
satisfy, for any i, the geometrical boundary conditions.
TABLE 2

Coe.cients m and l

Index Free Simply supported Clamped

m(m"0) !1 0 1
l(m"1) 0 1 2

5. NUMERICAL RESULTS

The results obtained by the technique described above have been compared with some of
those reported in literature.



TABLE 3

Simply supported beam2comparison with the results collected in reference [6]

Mode number 1 2 3 4

Markus method u
n
(rad/s) * * * *

g
n
(%) 3)42 1)07 0)50 0)28

Rayleigh}Ritz method u
n
(rad/s) 1188 4573 10207 18094

g
n
(%) 3)43 1)07 0)50 0)28

Cum-search method u
n
(rad/s) 1188 * * *

g
n
(%) 3)38 * * *

Conventional method u
n
(rad/s) 1187 4573 10207 18094

g
n
(%) 3)43 1)07 0)50 0)28

Present study u
n
(rad/s) 1204 4631 10328 18278

g
n
(%) 3)43 1)07 0)50 0)28

TABLE 4

Simply supported beam2comparison with the results collected in reference [9]

Mode number 1 2 3 4

Sakiyama Matsuda Morita g
v
"0)1 g

n
(%) 0)28 1)02 2)00 3)08

g
v
"0)4 g

n
(%) 0)96 3)58 7)26 11)3

g
v
"1)0 g

n
(%) 1)40 5)40 11)4 18)5

Present study g
v
"0)1 g

n
(%) 0)27 1)01 2)02 3)09

g
v
"0)4 g

n
(%) 0)96 3)57 7)21 11)2

g
v
"1)0 g

n
(%) 1)41 5)38 11)3 18)4
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5.1. SIMPLY SUPPORTED BEAMS

Some of the results collected in reference [6], namely, Problem II, and regarding simply
supported conditions, are shown in Table 3.
&&Markus method'' indicates the values obtained by implementing the method proposed

in reference [15], &&Rayleigh}Ritz method'' indicates the values obtained by implementing
the method proposed in reference [6] (transverse displacement is modelled with a sum of
sinusoidal functions), &&Cum-search method'' indicates the values obtained by solving a sixth
order di!erential equation [7], &&Conventional method'' indicates the values obtained by
implementing the method proposed in reference [16]. The correspondence is excellent for
loss factor estimations, whilst some percent di!erences exist for frequencies. The authors'
results have been computed with 20 terms, i.e., I"20 in equation (3), but no sensible
variation was found with 80 terms. Also for Problems I and III in reference [6] similar
precision was achieved. The data shown in Table 4 are relative to the results computed by
Sakiyama et al. [9] and, again, very good agreement is reached.



TABLE 5

Clamped}free beam2comparison with the results collected in reference [17]

Mode number 1 2 3 4

Sixth g
v
"0)1 f

n
(Hz) 64)08 296)6 743)7 1394

g
n
(%) 2)82 2)42 1)54 0)889

Sixth g
v
"1)5 f

n
(Hz) 69)88 308)9 754)0 1400

g
n
(%) 23)0 29)6 21)9 13)1

JKR g
v
"0)1 f

n
(Hz) 64)2 297)0 747)2 1408

g
n
(%) 2)82 2)53 1)53 0)88

JKR g
v
"1)5 f

n
(Hz) 70)0 315)0 774)0 1433

g
n
(%) 22)8 29)3 21)90 13)0

MaceH g
v
"0)1 f

n
(Hz) 60)9 288)8 732)9 1381

g
n
(%) 2)65 2)17 1)33 0)74

MaceH g
v
"1)5 f

n
(Hz) 64)4 303)5 755)3 1401

g
n
(%) 26)5 32)6 19)9 11)1

Present study g
v
"0)1 f

n
(Hz) 63)35 292)1 732)8 1373

g
n
(%) 2)86 2)43 1)54 0)89

Present study g
v
"1)5 f

n
(Hz) 69)13 304)3 743)4 1378

g
n
(%) 23)4 29)6 21)9 13)1

TABLE 6

Clamped}free beam2comparison with the results collected in reference [9]

Mode number 1 2 3 4

Sakiyama
Matsuda Morita g

v
"0)1 g

n
(%) 0)12 0)84 1)78 2)86

g
v
"1)0 g

n
(%) 1)40 5)40 11)4 18)5

Sixth g
v
"0)1 g

n
(%) 0)10 0)58 1)48 2)54

Present study g
v
"0)1 g

n
(%) 0)21 0)79 1)62 2)60

Present study g
v
"1)0 g

n
(%) 0)65 4)37 9)83 16)8
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5.2. CLAMPED-FREE BEAMS

Table 5 summarizes the comparison of the analysis of an aluminium beam with some of
the results in reference [17]; &&sixth'' indicates the values obtained by implementing the
method proposed in reference [18], &&JKR'' indicates the values obtained by implementing
the method proposed in reference [13], &&MaceH '' indicates the values obtained by
implementing the method proposed in reference [17].

Table 6 summarizes the comparison with some of the result in reference [9]; &&Sakiyama
Matsuda Morita'' indicates the values obtained by implementing the method proposed in
reference [9] and &&sixth'' indicates the values obtained by implementing the method
proposed in reference [4].

For these boundary conditions also, the agreement with the values reported in literature
is good, with the exception of the "rst mode of Table 6.



TABLE 7

Free}free beam with three damped layers2comparison with the results collected in
reference [17]

g
v
(%) G

2
(N/m2) g

v
(%) G

2
(N/m2) g

v
(%) G

2
(N/m2)

65 1)6]107 73 2)2]107 78 2)8]107

g
n
(%) f

n
(Hz) g

n
(%) f

n
(Hz) g

n
(%) f

n
(Hz)

MaceD 8)8 193 17)5 493 22)3 900
MaceH -experiment 8)9 202 18 512 24)7 941
Present study 7)4 205 15)7 516 20)8 938
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Other numerical comparisons have been carried out, on the basis of the values in
references [9, 10, 17], to test the capability of the proposed method to deal with free}free
and clamped}clamped beams. The result are not reported here for brevity but their
precision is equivalent to that of the estimations herewith collected.

The chance of using complex Young's moduli for the constraining layers has been useful
to verify (Table 7) the values of an experimental test reported in reference [17]. In that test,
glass-"bre reinforced plastic is used for the external faces, so that it is not possible to neglect
the energy dissipation due to the deformations of layers 1 and 3. In fact, a constant loss
factor (0)005) is attributed to the external faces and a frequency varying behaviour of the
damping layer is assumed. The values of G

2
and g

v
reported in Table 7 have been evinced

from a "gure in reference [17].

6. CONCLUSION

The Rayleigh}Ritz method is proposed to calculate the modal frequencies of sandwich
beams with various boundary conditions. Polynomials are used as admissible functions,
leading to simple expressions of the integrals appearing in the kinetic and strain energies of
the system. The opportunity to determine the modal loss factors is given by assuming
complex de"nitions of the elastic moduli of the layers of the beam. Numerical results are in
good agreement with those reported in literature and computed with various di!erent
methods.

Di!erent hypotheses for the deformations of the beam would generate di!erent formulae
for the kinetic and strain energies, but would not modify the technique described above.
Future investigations will be devoted to the analysis of partially covered beams and
sandwich plates.
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APPENDIX A: NOMENCLATURE

¸ length of the beam
h
1
, h

2
, h

3
thickness of layers 1, 2, 3

E
1
, E

3
Young's modulus of layers 1 and 3

G
2

shear modulus of layer 2
g
v

loss factor of layer 2
o
1
, o

2
, o

3
mass density of layers 1, 2, 3

o"o
1
h
1
#o

2
h
2
#o

3
h
3

f frequency
u circular frequency (2n f )
j"¸u2/2 eigenvalue
u
1
, u

3
longitudinal deformations of layers 1 and 3

w transverse deformation of layers 1, 2 and 3
c
xz

strain (distortion angle) in layer 2
q
xz

stress in layer 2
e
xx

strain (extension) in layers 1 and 3
e
1
"(h

3
!h

1
)/4 geometrical parameter

e
2
"(h

3
#h

1
)/2 geometrical parameter

C"(h
3
#h

1
)/2#h

2
geometrical parameter
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